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Breast cancer (BC) is one of the leading causes of death in adult women worldwide and the best

way to reduce mortality and improve prognosis is through early diagnosis. Thus, it is necessary
to optimize diagnostic methods; one option could be the automatic detection of patterns in 1D-

II. In that respect, through recent analysis of unidimensional Immunoblot Images (1D-II), it was

possible to distinguish between women with and without breast disease using as a discrimina-

tion criterion the presence of autoantibodies (bands) in their blood. However, the analysis of 1D-
II is a di±cult task even for an expert, generating great subjectivity and complexity in the

process of interpretation.

In the present study, a semi-automatic methodology for the bands' analysis contained in the
1D-II's was implemented and evaluated, the bands were extracted using digital image proces-

sing techniques. This was possible through the recognition of banding patterns represented as

time series to distinguish between three classes: women with breast cancer (BC), women with

benign breast pathology (BBP) and women without breast pathology (H). The classi¯cation
was performed using the machine learning algorithm k-nearest neighbors (KNN) with di®erent

parameters over the time series representation.

The semi-automatic method here presented was able to reduce the time, complexity and

subjectivity of the image analysis with the performance metrics compared, obtaining similar
percentages for both representations. With the traditional analysis, binary representation

[Accuracy 72.8%, Precision 73.42% for three classes (BC, BBP and H) and Accuracy 90.91%

Accuracy 92.55% Sensitivity 93.57% and Speci¯city 92.99% for two classes (BC and H)], versus
Time series representation [Accuracy 66.4%, Precision 67.07% for three classes (BC, BBP

and H) and Accuracy 86.36% Accuracy 87.31% Sensitivity 95.86% and Speci¯city 85.56% for

two classes (BC and H)].
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1. Introduction

Breast cancer (BC) is the most common pathology in women worldwide and one of

the leading causes of death in adult women. According to the World Health Orga-

nization (WHO), each year 1.38 million new cases are detected and 548 thousand

people die from this cause.1 In Mexico, the BC's mortality rate has increased sig-

ni¯cantly, particularly in women between 45–54 years old, followed by women ages

35–44,2,3 becoming the leading cause of death in women over 35 years old.4 This

occurs since the detection usually takes place in advanced stages of the disease. In

this regard, it is necessary to optimize and improve diagnostic methods.

It has recently been proposed that autoantibodies are useful in diagnosis, prog-

nosis and follow-up of patients with several diseases.5–7 Interest surrounding the role

of autoantibodies has steadily increased during the past decade, resulting in a more

intense focus on their development as early biomarkers of cancer.8–20

In this regard, our research group noted that through the analysis of unidimen-

sional immunoblot images (1D-II) it was possible to distinguish between women with

and without breast disease as reported in Esquivel-Velazquez et al.21 Our results

show that IgG 1D-II with sera from women with BC, women with benign breast

pathology (BBP) and without breast disease (H), when reacted with whole protein

extracts of T47D cells, display a huge diversity within and between groups. None of

the banding patterns analyzed were the same in two or more individuals. However,

despite this huge diversity, 1D-II from BC and BBP women may be con¯dently

distinguished from those of healthy women, reaching sensitivity values of 46–100%

and speci¯city of 74–98%, depending on whether the immunoblots detected as few as

one High Risk Band or more.21 However, even with the bene¯ts of this method, the

analysis of 1D-II's was very complex since the individual strips from 150 women must

be aligned in groups of about ¯fteen or seventeen strips, in which the bands of each

strip are compared with each other, in order to decide if its identity is equal or not

between them and with a control strip (a strip included in all the images). In ad-

dition, since one image includes about ¯fteen or seventeen strips, the bands' analysis

should consider the comparison of the bands' identity between images (in our case

the comparison between ¯fteen images). Thus, the analysis with traditional soft-

ware's requires a very expert and trained eye and the analysis of a single experiment

(an image) can take up to a month (Fig. 1).

Thus, Western blot is widely used in proteomics6 and is often used in research to

separate and identify proteins.22 The inception of the protocol for protein transfer

from an electrophoresed gel to a membrane by Towbin (1979) has evolved great-

ly23,24 however, image analysis is still rudimentary. This is because software pro-

grams that exist today for western blot image analysis, only have the capacity to

propose to the researcher potential bands found on a strip and to align the bands
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between strips, but in the end the researcher is the one who decides whether the

software has made a good detection or alignment of the bands or not. Additionally,

the existing software does not allow the comparison between di®erent images, which

makes the analysis even more complicated, because it depends on an expert eye.

Therefore, it is necessary to have automatic methods of analysis in order to simplify

the procedure and improve the results by eliminating subjectivity, making this task

easier and quanti¯able.25

In the present study we proposed a semi-automatic method of analysis in which

the 1D-I digital image is processed and classi¯ed by its banding patterns using a data

mining time series approach. We explored the performance of the semi-automatic

methodology in a sample of 150 female patients categorized into three classes:

patients with BC patients with a BBP and healthy patients (H); and compared its

accuracy, precision, sensitivity and speci¯city with a traditional 1D-I image device

running by an expert human eye.

2. Materials and Methods

2.1. Grouping of participants and sample sizes

For this study we recruited BC and BBP patients at their ¯rst consultation at the

Hospital General de M�exico \Dr. Eduardo Liceaga" as reported in Romo-Gonz�alez

et al.26 The molecular pro¯les of the breast tumors were: 58% hormone receptor-

positive, 30% HER2-positive and 12% triple-negative. We also recruited 50 women

without breast pathology who volunteered to participate in the study and had blood

Fig. 1. (a) Example of an image includes ¯fteen strips, where strip 9 represents the control strip (H111).
(b) Example of a strip/serum Immunoblot in which the bands are identi¯ed, re°ecting the presence (1) or

absence (0) of proteins. (c) The bands in each lane were selected using quantity one (green bands are

known band types, red bands are bands that have been automatically matched with the known band

types, yellow bands are bands that have not been matched and are unclassi¯ed).
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drawn by trained personnel in the Instituto de Investigaciones Biom�edicas, UNAM.

All participants were informed of the details of the study (scienti¯c and technical

basis, exclusive use of their blood sample for immunodiagnostic of BC, anonymity,

con¯dentiality) and signed a letter of informed consent. The protocol was reviewed

and approved by the Committee of Ethical Research of the Hospital General de

M�exico \Dr. Eduardo Liceaga" (DI/12/111/03/064). The study conforms to The

Code of Ethics of the World Medical Association (Declaration of Helsinki), printed in

the British Medical Journal (18 July 1964).

2.2. Sample's preparation, unidimensional electrophoresis and

immunoblots of the protein extracts from the T47D cell-line

Venous blood was collected as in Romo-Gonz�alez et al.26 Brie°y, ten milliliters of

blood were drawn from each participant using BD Vacutainerr kits. Sera were

collected and aliquoted before storage at �80�C.
The human BC cell line T47D was cultured and harvested as established in

Romo-Gonz�alez et al.26 Brie°y, cells were grown on plastic tissue culture plates in

95% humidity and 5% CO2 at 37�C and harvested by treatment with PBS with

EDTA, before pelleting and freezing at �80�C. Cells from other BC cell-lines,

namely MCF7 and MDA-MB-23, were cultured and prepared in a similar manner.

Cell pellets in a denaturing lysis bu®er (M urea, 4% (w/v) CHAPS, 65mM DTT

and Halt protease inhibitor cocktail), were centrifuged and supernatants were

recuperated. The cell lysates were pooled, the protein concentration was measured,

aliquoted and kept at �80�C until further use.

Western Blot optimization: Prior to performing the experiments, several controls

were executed and the optimum parameters determined. To determine both the

optimum serum and secondary antibody dilution, a series of dilutions were per-

formed and two secondary antibodies were tested (goat anti-human IgG (HþL) and

goat anti-human IgG (FC); THERMO) by Western Blot. The optimum serum di-

lution was determined to be 1:300 and of the secondary antibody 1:2,500. No dif-

ference was found between secondary antibodies and none detected any bands on the

separated proteins from the extract when incubated alone. Likewise, a group of

randomly-selected sera were probed at di®erent dilutions against the separated

proteins of the fetal calf serum used for the culture of T47D, and none of the sera

recognized any bands. Additionally, two reagents for blocking the membranes (5%

Svelty skimmed milk, and 2% and 5% Albumin) and two systems for detecting the

presence of the bound secondary antibody (HRP-Diaminobenzidine (SIGMA) and

AP-NBT/BCIP (THERMO) were probed, with no di®erences found among them.

The protein extract (PE) from the T47D Cell-Line was subjected to electropho-

resis using polyacrilamide gels (4–20% TGX Bio-Rad) before transferring the pro-

teins onto nitrocellulose membranes (High Bond, Amersham Biosciences). Western

Blot was then performed. Before blocking the membranes with 5% skimmed milk,

they were marked with two horizontal pencil lines at their upper and lower limits
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which were then reversibly-stained using copper phthalocyaninetetrasulphonic acid

(Sigma-Aldrich, St. Louis, MO), scanned and destained. Each membrane was cut

vertically into seventeen or eighteen 4mm wide strips. Each strip was then probed

individually with the serum of a di®erent participant. As an internal control, the

same identical serum from a healthy woman (H111) was included in each set of 17–18

strips (17 sets). Bound antibodies were detected by incubation of the strips with

HRP-conjugated secondary antibody.

2.3. Traditional 1D-II analysis

As reported in Romo-Gonz�alez et al.,26 the strips of the Immunoblots were scanned

at 300 dpi in TIF format. The digitalized images of the strips were aligned with their

corresponding image of reversible-stained membrane and the \smiling e®ect" was

corrected with Photoshop CC 2014 (Perspective Warp tool).

Figure 1(A) shows one image including ¯fteen strips of the immunoblots, that

were compared with each other using the control strip in order to identify the total

number of di®erent bands. Banding patterns between strips form di®erent mem-

branes were compared using the control strip (H111) in order to identify the total

number of di®erent bands and create a binary database with the presence (1) or

absence (0) of each band in each strip according to the expert criteria (Fig. 1(B)).

Bands were numbered from 1 to 228 as their molecular weight (MW) decreased.

Afterwards, bands in each image were detected with Quantity-One Software (Bio-

Rad).27 Figure 1(C) shows the bands in each lane were selected, where green bands

are known band types, red bands are bands that have been automatically matched

with the known band types and yellow bands are bands that have not been matched

and are unclassi¯ed.

2.4. Semi-automatic 1D-II analysis using time series representation

In order to explore the classi¯cation of banding patterns using time series data

mining, a continuous representation by time series was obtained from 1D-II. In

addition the results obtained with the traditional analysis (binary representation

manually de¯ned) were compared with the semi-automatic method (continuous re-

presentation). Figure 2 shows a graphic comparison between the processes carried

out with the traditional analysis against the proposed semi-automatic method by

time series.

The process for the continuous representation by time series is explained below:

2.4.1. Preprocessing and transformation

The study was conducted from 15 color images in TIF format known as unidimen-

sional immunoblot images (1D-II) previously used in the traditional analysis. 1D-II

images were represented in RGB color model, in each of the color channels or HIS

(Hue, Saturation, Intensity) and in scales of gray in order to explore in which of the
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color spaces did the bands show the best de¯nition. All the 1D-II were transformed to

a blue channel of RGB color scale, since it was the channel in which the bands were

appreciated with more amplitude (Fig. 3).

2.4.2. Time series extraction

A time series represents a continuous set of numerical data in time that is arranged

chronologically, which helps to describe, explain, predict and control the processes

that somehow occur over time.28 That is, if we considered the sequence presented in

the strip by western blot running as a key change over time for each pixel, the

patterns can be extracted directly from the 1D-II image (Fig. 4). Each western blot

strip can be thought of as a time series. Where strip (tÞ represents a vector of size (tÞ.

Fig. 3. Strip from serum of a BC patient seen in the three channels of RGB color model. (a) Red channel

¯lter. (b) Green channel ¯lter. (c) Blue channel ¯lter. (d) Time series graph for the three channels of RGB
color model. Note that in the blue channel the amplitude of the signal has the highest amplitude.

Fig. 4. Graph showing time series of a strip corresponding to a BC patient's serum.
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Thus there are (tÞ pixels. Where pðiÞ represents the color of the pixel ðiÞ,
i ¼ 1; . . . ;m. The intensity value of each pixel over time is used to construct a time

series. Hence the strip dataset can be thought of as a data matrix. Where dataset

(t;nÞ represents a stack of n strips of size (tÞ.
The data of each strip can be extracted directly from the image marking a straight

line over its central part. In order to de¯ne the region of interest (ROI) on the image

strip, it was necessary that the researcher de¯ne the start and end point of the strip

band on the image. Due to the di®erence in size of the ROIs on each 1D-I, the length

of the time series was di®erent. Thus, a cubic interpolation scaling was performed in

order to standardize its length.

2.4.3. Creation of the times series database

With the same size time series of all the strips, a database was created with the values

of the continuous data.28,29 Figure 5 shows the time series from the 150 strips/

patients separated by class (BC, BBP and H).

2.4.4. Classi¯cation

The classi¯cation is a task undertaken to ¯nd common cases from a set of features

within a database.30,32 The learning process was performed using the classi¯cation

algorithm K-nearest neighbor (KNN). This algorithm was chosen since it is a simple

and e±cient algorithm than works with continuous data. The main idea behind this

Fig. 5. Representation of time series obtained from the 150 strips separated by class: 50 time series from

the BC class; 50 time series from BBP class; and 50 time series from H class.
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algorithm is that a new case is classi¯ed as the closest related class under its

KNN.30,33 Due to the fact that a similarity measure can be determinant on the

accuracy, precision, sensitivity and speci¯city results, di®erent metrics were evalu-

ated on this study: similarity criteria (Correlation, Euclidean), distance measure

(equal, weighted inverse, weighted square inverse).

In order to evaluate the performance of the classi¯er, the k-fold cross-

validation technique was used, which segments the data into k partitions of equal

size.31 During execution, one of the partitions was chosen to test while the rest was

used for training. This procedure was repeated k times, where the value of

k-fold ¼ 10.

2.5. Evaluation of the performance of the binary and continuous

representations

We analyzed both representations (binary and continuous). For the binary repre-

sentation, since its representation is discrete, the following classi¯cation algorithms

were used: J48, Naïve Bayes, KNN, Linear Discriminant, Support Vector Machine,

and Multilayer Perceptron. In the case of the time series proposed approach, only

KNN was used because of the continuous nature of this representation. The per-

formance of the algorithm KNN was explored assigning values k ¼ 3, k ¼ 5 and

k ¼ 10. Similarity criteria (SC) used were: Correlation and Euclidean, and values

used for the distance measure (D) were: equal (no weighting), inverse (weight is 1/

distance) and square inverse (weight is 1/distance2).34,35

Correlation: Measure of statistical dependence between two variables. It is zero if

and only if the variables are statistically independent. However, if the result is one,

the variables are similar in shape (Eq. (1)). Here X and Y represent the registers

being compared.

Correlation ¼ nðP xyÞ � P
xð Þ P

yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

x2 � P
xð Þ2ð Þ � n

P
y2 � yð Þ2ð Þ

p : ð1Þ

Euclidean: The Euclidean distance between any two instances is the length of the

line segment connecting them (Eq. (2)). Where Xi and Yi represent the vectors of the

items being compared.

Euclidean distance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðXi� YiÞ2
s

ð2Þ

2.5.1. Classi¯cation of performance metrics

Accuracy is calculated as the number of all correct predictions divided by the total

number of the dataset (Eq. (3)).

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
: ð3Þ
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Precision is calculated as the number of correct positive predictions divided by

the total number of positive predictions (Eq. (4)).

Precision ¼ TP

TPþ FP
: ð4Þ

Sensitivity is calculated as the number of correct positive predictions divided by

the total number of positives (Eq. (5)).

Sensitivity ¼ TP

TPþ FN
: ð5Þ

Speci¯city is calculated as the number of correct negative predictions divided by

the total number of negatives (Eq. (6)).

Specificity ¼ TN

TNþ FP
; ð6Þ

where TP (true positive) denotes the number of correct positive predictions

(class BC).

FP (false positive) denotes the number of incorrect positive predictions

(class BC).

TN (true negative) denotes the number of correct negative predictions (class H).

FN (true negative) denotes the number of incorrect negative predictions (class H).

Fig. 6. Graphic representations of the data. (1) Binary representation with 228 attributes, 150 instances

an 3 classes (BC, BBP, H); 2) Time series representation of with 717 attributes, 150 instances and 3 classes

(BC, BBP and H).
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2.5.2. Statistical analysis

Because data was not normally distributed, Kruskal–Wallis test followed by Tukey

post-hoc tests for multiple comparisons were made. Data was analyzed using

MATLAB R2009a scienti¯c software (the MathWorksTM). Classi¯cation analysis

was made using WEKA Data Mining Software.39

2.6. Comparing a semi-automatic method based on time series

against the traditional method

As was mentioned above, two representations were used to evaluate and compare

results: the binary representation obtained by the traditional method (helped by

Quantity one software), in which the values are discrete, forming a vector of 228

positions (features); and the representation of time series (semi-automatically

extracted from the images) composed for a continuous data represented as a vector of

717 positions. In both cases 150 instances and three classes (BC, BBP and H) were

used. The representations of both sets of data are shown in Fig. 6.

3. Results

3.1. Classi¯cation for binary representation

In order to obtain the performance metrics for the binary representation, the clas-

si¯cation algorithms J48, Naïve Bayes, KNN (SC ¼ Correlation j Euclidean, D ¼
equal j inverse j square inverse, k ¼ 3), Linear Discriminant, Support Vector Machine

and Multilayer Perceptron were used. The classi¯ers comparison was made consid-

ering three (BC, BBP and H) and two classes (BC and H). Table 1 shows the

accuracy, precision, sensitivity and speci¯city percentages obtained by each classi-

¯er. The highest percentage of accuracy and precision for the evaluation of the three

classes (BC, BBP, H) was obtained with KNN (k ¼ 3, SC ¼ Correlation, D ¼ square

inverse) accuracy 72.8%, precision 73.42% with the same parameters for both

metrics, but the di®erences in the percentages were not statistically signi¯cant.

Similarly, for the representation of the binary two classes (BC, H) the highest

accuracy, precision and speci¯city percentages was obtained with KNN (k ¼ 3,

SC ¼ Euclidean, D ¼ equal), reporting accuracy 90.91%, precision 92.55% and

speci¯city 92.99%, while the highest sensitivity percentage obtained was 93.57% with

KNN (k ¼ 3, SC ¼ Correlation, D ¼ square inverse). However, in the case of the two

classes analysis the highest percentages with these classi¯ers were statistically sig-

ni¯cant (Table 1). It is noteworthy that all classi¯ers increase their accuracy and

precision when only the BC and H classes were considered.

3.2. Classi¯cation for the time series representation

For the continuous representation by time series the KNN classi¯cation algorithm

was used with both Correlation and Euclidean similarity criteria. Table 2 shows
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accuracy, precision, sensitivity and speci¯city percentages obtained by each classi¯er

and its parameters.

The highest percentage of precision for the evaluation of three classes (BC,

BBP, H) was obtained with KNN using values k ¼ 5, SC ¼ Euclidean, D¼square

and using values k ¼ 3 SC ¼ Correlation, D ¼ square inverse; obtaining 66.4% in

both cases. For the metric of precision the highest percentage obtained was with the

parameters of k ¼ 3, SC ¼ Correlation and D ¼ square inverse, in the case of the

three classes the di®erences in the percentages were not statistically signi¯cant. For

the representation of the time series two classes (BC, H), the highest percentages of

accuracy (86.36%), precision (87.31) and speci¯city (85.56%) was obtained with

KNN with values of k ¼ 3, SC ¼ Euclidean and D ¼ equal. Finally, the highest

sensitivity percentage was 95.86% obtained with k ¼ 5, SC¼correlation and

D ¼ equal. However, in the case of the two classes analysis the highest percentages of

accuracy, sensitivity and speci¯city with these classi¯ers were statistically signi¯cant

(Table 2).

3.3. Evaluation of the semi-automatic analysis method, binary

and continuous representation comparison

As can be seen in Tables 1 and 2 the accuracy, precision, sensibility and speci¯city

percentages of classi¯cation obtained by the two representations or methods were

very similar in both cases. As expected, there was no statistically signi¯cant di®er-

ence (3 classes; p� value ¼ 0:7658 and 2 classes (BC and H; p-value¼ 0.8338).

4. Discussion

Breast cancer is one of the leading causes of death in adult women worldwide and the

best way to reduce its mortality and improve prognosis is through early diagnosis.

Recently our group found that through the analysis of unidimensional Immunoblot

Images (1D-II), it was possible to distinguish between women with and without

breast disease using as a discrimination criterion the presence of autoantibodies

(bands) in their blood. However, the analysis of 1D-II is a di±cult task even for an

expert, generating great subjectivity and complexity in the process of interpretation.

Although some commercial software to analyze unidimensional Western blot

images do exist, most of these tools are designed to analyze the identity of bands in a

single image. Thus, the researcher has to align the bands from multiple strips in order

to decide if its identity is equal or not between them and with a control strip. In

addition, since one image includes about ¯fteen or seventeen strips, the bands'

analysis should consider the comparison of the bands' identity between images. Thus

the analysis with traditional software requires a very expert and trained eye and the

analysis of a single experiment (an image) can take up to a month.

Taken this complex task, we developed a semi-automatic tool to optimize the

procedure and make it less subjective. In this semi-automatic method of analysis, the
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1D-I digital image is processed and classi¯ed by its banding patterns using a data

mining time series approach. We explored the performance of the semi-automatic

methodology in a sample of 150 female patients categorized into three classes: BC,

BBP and women without pathology (H); and compared its accuracy, speci¯city,

sensibility and precision with a traditional 1D-I image software running by an expert

human eye.

Our results show that all classi¯ers in both methods increase their accuracy when

only the BC and H classes were considered. So it seems that the BBP group, being a

group with characteristics of both health and illness (in-between group),21,26,36

generates errors in the classi¯cation, thus it is better only to consider H and BC

women in the analysis procedure.

In addition, there was no statistically signi¯cant di®erence between the tradi-

tional 1D-I Image Software running by an expert human eye and the semi-

automatic method of analysis here proposed; that is, it can be concluded that the

two methods are equivalent, however the continuous representation by times series

is semi-automatic and avoids the subjectivity and complexity of the manual

binarization process.

Thus the image analysis method using time series data mining proposed here, not

only reduces the subjectivity of the human eye by semi-automating the process, but

also facilitates the comparison of multiple images at the same time, which reduces

time and e®ort for the user. That is, the analysis running by commercial software can

take even a month for one image, which implies several hours for the researcher in

front of a computer; while the semi-automatic method could take 15min without any

e®ort from the user and without the subjectivity of the human eye. The latter is of

great importance since there are studies that show that the human eye can change its

perception with the time of exposition to an image.37,38

In addition to the reduction of time and subjectivity, the proposed method can be

used without previous biological, medical or informatics knowledge, background or

technical training in western blot or programing, since the tasks that are performed

with the semi-automatic method are simple, such as selecting the area of 1D-II and

each of the strips representing the time series to subsequently form the database.

Even when this protocol was implemented in breast cancer western blot

images', since Western blot is widely used by many medical and biological scientists

in order to separate and identify proteins,6,22 the semi-automatic method can be

applied to any 1D-Western blot image, providing an easy tool to reduce time and

subjectivity. Particularly, when the purpose of the Western blot experiment is to

¯nd banding patterns and discern this complex patterns when a comparison be-

tween strips and groups is made. Therefore, the method of time series analysis

proposed here could very well be useful for research in di®erent ¯elds. However, it is

still necessary to improve the method and make it automatic through the devel-

opment of software in which any western blot image can be analyzed in an easier

and faster way.
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5. Conclusions and Future Work

The present work presents a semi-automatic method for unidimensional immunoblot

images to discriminate breast cancer cases using time series data mining. Our results

suggest that it is possible to reach similar performance than those obtained by

human experts using manual methods. Our method signi¯cantly reduces not only the

time processing from days to minutes, but also the subjectivity involved in the

manual process. Additionally this method could be generalized to analyze any set of

Western blot 1D-II patterns.

Although this method improved the traditional process for classi¯cation and

identi¯cation of banding patterns, more resources could be used to extend the work

carried. Particularly, we plan to continue working on the following points:

As part of the time series extraction process, due to the di®erence in size of the

ROIs on each 1D-II, it was necessary to manually resize the time series in order to

standardize their length. This process can be improved using DTW as an automatic

method to realign the 1D-II sequences. Although the DTW algorithm is proposed in

time series data mining as a similarity measure method, it can be used as well for

registration, because it searches for the best match between two temporal sequences.

This algorithm has been successfully applied in di®erent time series data mining

applications.56,57

Finally, among the classi¯cation algorithms used to evaluate the accuracy of the

proposed method, in the scope of the probabilistic approaches, only the Naïve Bayes
algorithm was included. The advantage of this algorithm is that it is very simple, fast

and e±cient in general terms, this is because it assumes conditional independence

among attributes; however, in practice this is not always true. A better alternative is

to use Bayesian networks (BN), under this approach all the conditional probabilities

between attributes are tested in order ¯nd relationships.58,59 These relationships are

shown in a graphical model in which the attributes represent the nodes and the

arches represent the conditional dependences between them. A disadvantage of this

method is that it needs many more training examples than Naïve–Bayes in order to

create a solid model.
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